SPHERE upgrade XAO perspective

The goals

- Going closer to the optical axis
 → < 150 mas
- Going deeper

 \rightarrow Gain of 1 to 2 order of mag in contrast

- Going fainter
 - → Improve the limit mag (or improve the XAO performance without degrading the limit mag)
- A couple of science cases :
 - Prox B mais pas que ...
 - Coupling of SPHERE and ESPRESSO
 - Benifit for other cases (IR observation)

From the SAXO perspective

- \rightarrow Reduce the impact of the residual halo
 - ⇒Temporal
 - \Rightarrow Noise \Rightarrow Close to the optical axis \Rightarrow Chromatic effects

⇒aliasing _____ Close to the correction radius

- \rightarrow Reduce the contribution of static speckles
 - \Rightarrow Dark-hole calibration => Coffee
 - \Rightarrow Dark-hole stabilisation => Zelda

XAO halo

Seeing (DIMM) = $0.9 \pm 0.03''$

SR = 85 ± 1 %

SR = 57 ± 8 %

Seeing(DIMM) = $1.0 \pm 0.3''$

ESO SPARTA RTC ; very low latency (80 μ s)

GQLupi

SPHERE main limitation: From AO residual to Quasi-static speckle

HIP 43620

Limited by AO residual

Tcha

Limited by QS residuals

HIP 73 145

ax

2 solutions

- Simple and limited : post-processing & coronagraphic PSF estimation
 - Use of RTC data No HW implementation
 - « simple PSF substraction » to improve final data

- → RDI

- Potential gain in detectivity BUT
- Limitation = Photon noise !
- Complex and more performant : Going <u>faster</u> and / or using <u>more efficient control laws</u>
 - Significant potential gain if Fech >> 1.5 kHz
 - Modification / Change of SAXO RTC
 - Significant reduction of SAXO limit mag !
 => needs for a new WFS !!!!!

Going faster – Going fainter

- <u>Coupling new RTC / new control laws</u> and <u>new WFS</u>
- An additional Pyramid WFS in SAXO
 - Real gain if Pyramid works @ high SR
 - Marginal gain for Pyamid @ λ < 700 nm
 - Benifit from
 - New detectors with exptionnal characteristis (0 RON, no excess noise)
 - GS type (especially for $M \rightarrow M5$ types)
 - \Rightarrow Reduce the chromatic errors for IR
 - \Rightarrow Improve sensitivity for Zimpol (all vis-light)
 - \Rightarrow Best solution for the coupling with Espresso

Photometry

 \Rightarrow Allow to go faster with the same limit mag \Rightarrow Significant gain in perf for IR-PYR

Interest of an IR-PYR for SPHERE

- Keep SPHERE as it is in its primary mode (VIS F-SH WFS with the SARTA RTC)
- Photometric gain (0.8 1.2) :

– M5:3,43E+11	to be compared to VIS : 8,03E+10	Gain X9
– M0 : 2,50E+11	8,18E+10	X 6
— G0 : 2,05E+11	8,39E+10	X 5
No excess noise	Excess noise <=> /2	

- Stand alone upgrade
 - IR Pyramid with its own RTC (at least for hard real time)
 - No (minimum) interaction between the two modes
 - Pyr high level spec
 - Use existing IR detector : CRed camera (FLI)
 - Bandwidth > 2.5 kHz
 - 60x60 pixel pupil
 - Spectral bandwidth : [800 1200 nm] (could be reduced or extented depending on the scientific needs)
 - ADC
 - Modulation ? Probably yes although very limited radius (< 2 λ / D)